ENVIRONMENTAL PRODUCT DECLARATION

as per ISO 14025 and EN 15804

Owner of the Declaration	European Association for Panels and Profiles
Programme holder	Institut Bauen und Umwelt e.V. (IBU)
Publisher	Institut Bauen und Umwelt e.V. (IBU)
Declaration number	EPD-EPQ-20130170-CBG1-EN
ECO EPD Ref. No.	ECO-0000005
Issue date	12.09.2013
Valid to	11.09.2018

Double skin steel faced sandwich panels with a core made of polyurethane European Association for Panels and Profiles

www.bau-umwelt.com

General Information

European Association for Panels and Profiles

Programme holder

IBU - Institut Bauen und Umwelt e.V. Panoramastraße 1 D-10178 Berlin

Declaration number

EPD-EPQ-20130170-CBG1-EN

This Declaration is based on the Product Category Rules:

Double skin metal faced sandwich panels, 07-2013 (PCR tested and approved by the independent expert committee [SVA])

Issue date 12.09.2013

Valid to 11.09.2018

rennames

Prof. Dr.-Ing. Horst J. Bossenmayer (President of Institut Bauen und Umwelt e.V.)

Prof. Dr.-Ing. Hans-Wolf Reinhardt

(Chairman of SVA)

Product

Product description and placing on the market

Prefabricated double skin steel faced sandwich panels with a core made of polyurethane, for load-bearing, self-supporting and non-supporting application in roof, wall and ceiling structures.

The profiled internal and external steel sheets are made of a core of steel, which is protected against corrosion with zinc and organic coatings. The thermal insulating core material is made of polyurethane according to /EN 13165/ with sealing tapes according /DIN 18542/. The core is linked on both sides with resistance to shear forces to the profiled steel sheets.

The LCA is based on vertical averaging of the specific producer datasets under consideration of the respective yearly production amounts.

The products must comply with the Regulation (EU) No 305/2011 taking into account the harmonised technical specification /EN 14509/; they may be put on the market with the Declaration of Performance and the CE-mark.

Double skin steel faced sandwich panels with a core made of polyurethane

Owner of the Declaration

European Association for Panels and Profiles Europark Fichtenhain A 13a D-47807 Krefeld

Declared product / Declared unit

1m² prefabricated double skin steel faced sandwich panels with a insulating core made of polyurethane rigid foam

Scope:

The purpose of this document is limited to continuously produced sandwich panels with face sheets made of steel that are manufactured by member companies of the European Association for Panels and Profiles.

Data has been provided by 12 member companies of the European Association for Panels and Profiles for the year 2011. These companies represent between 50% and 67% of the members producing sandwich panels. Production volume of these companies is about 50% to the European market.

The owner of the declaration shall be liable for the underlying information and evidence.

Verification

Verification	
The CEN Norm EN 15804	serves as the core PCR
Independent verification or according to	
 internally	x externally
 Matthias Schuld . Sul	ulz

(Independent tester appointed by SVA)

Application

Application as covering component in roof and wall structures mainly for static loads.

Sandwich panels in wall and roof applications overtake tasks of the building physics, especially sound, heat and moisture safely. They perform simultaneously the function of air tightness of the building envelope.

The application takes place according to national regulations.

Technical Data

Technical specifications for sandwich panels with a core of polyurethane are:

- /EN 14509/
- /EN 13165/

Constructional data

Name		Unit			
Name	40	100	160	Onit	
Density of the insulation		kg/m ³			
Thickness of the element. When the outer layers are	40	100	160	mm	

European Association for **Panels** and **Profiles**

Name		Unit		
Name	40	100	160	Onit
flat, this is the overall height of the element (D); on heavily profiled elements this is the				
consistent core thickness without profile (dc)				
Thickness of the outer layer	0,6	0,6	0,6	mm
Thickness of the inner layer	0,5	0,5	0,5	mm
Calculation value for thermal conductivity of the insulation	0,0242	0,0242	0,0242	W/(mK)
Heat transfer coefficient of the total Element incl. heat bridges due to overlap and fixing elements	0,5850	0,2537	0,1529	W/(m ² K)
Weight	10,6	12,9	16,1	kg/m²

Base materials / Ancillary materials

Composition of the sandwich panels:

material	Thickness of the element							
Inaterial	40	100	160					
Steel sheet	84%	69%	58%					
Thermal insulation core	16%	31%	42%					

Steel according to /EN 10169/: S 280 GD to S 320 GD

LCA: Calculation rules

Declared Unit

The declared unit is 1m² of sandwich panel. The averaging is done vertically based on the specific primary data.

Declared unit

PU 40 mm	Value	Unit	
Declared unit	1	m²	
Surface weight	10,6	kg/m²	
Conversion factor to 1 kg	1/10,6	-	
PU 100 mm	Value	Unit	
Declared unit	1	m²	
Surface weight	12,9	kg/m²	
Conversion factor to 1 kg	1/12,9	-	
PU 160 mm	Value	Unit	
Declared unit	1	m²	
Surface weight	16,1	kg/m²	
Conversion factor to 1 kg	1/16,1	-	

Metallic coating according to /EN 10346/:

Zinc Z 275, coating 275 g/m². The zinc layer has a content of at least 99 weight percent zinc and a typical thickness of 20 μ m.

Organic coating according to /EN 12944-1/: Polyester (SP), coil coating, 25 μ m on the application side and max.15 μ m on the back side.

Thermal insulation core according to /EN 13165/: rigid polyurethane foam made of isocyanate and polyole.

The panels contain sealing tapes (amount on total weight < 0,6%) according to DIN 18542.

No /REACH/ materials included.

Reference service life

Double skin steel faced sandwich panels with the use in lightweight metal constructions must withstand a term of protection of at least 15 years. The term of protection is the period until first slight renewals in the surface are needed, only if there is no need of frequently inspections and service.

The term of protection depends on the location, weather conditions and the quality of the coating.

Double skin steel faced sandwich panels exhibit an estimated service life of 40 - 45 years depending on the use conditions.

System boundary

Type of the EPD: cradle to gate - with options

Production stage (modules A1-A3) includes processes that provide materials and energy input for the system, manufacturing and transport processes up to the factory gate, as well as waste processing.

For the end of life it is assumed that the steel proportion is recycled with credit for the recycling potential declared in module D and the PU proportion is incinerated (module C4) with credit given for energy substitution in module D.

Comparability

Basically, a comparison or an evaluation of EPD data is only possible if all the data sets to be compared were created according to /EN 15804/ and the building context, respectively the product-specific characteristics of performance, are taken into account.

LCA: Scenarios and additional technical inform

The following technical information is a basis for the declared modules.

End of life (C1-C4)

Name		Unit			
Name	40	100	160	Unit	
Recycling	8,9	8,9	9,3	kg	
Energy retrieving	1,7	4,0	6,8	kg	
Landfilling	0	0	0	kg	

European Association for **Panels** and **Profiles**

LCA: Ergebnisse

					мво		ARY (X :	= INC	LUDE	D IN LC	CA: MN	D = N	IODUL	E NO	T DEC	LARED)
		T STAGE CONSTRUCTI ON PROCESS USE STAGE END OF LIFE STAGE STAGE							BENEFITS AND LOADS BEYOND THE SYSTEM BOUNDARY S							
Raw material supply	Transport	Manufacturing	Transport	Construction-installation process	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	De-construction demolition	Transport	Waste processing	Disposal	Reuse- Recovery- Recycling- potential
A1	A2	A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	C3	C4	D
х	Х	х	MNI	D MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	Х	Х
RESU	LTS	OF THE	LC/	A - ENVI	RONN	ENT/	AL IMP#	ACT: 1	l m² S	andwig	ch pan	el	T			
					PU 40	mm			4	PU 100 n	nm	F.	Ĩ	PU	160 mm	
Param	eter	Unit		A1 - A3	с	4	D	A1	- A3	C4		D	A1 - A	43	C4	D
GW	P	[kg CO ₂ -Å	Áq.]	26,0	3,	8	-15,2	3	2,8	9,1		7,6	41,1		14,7	-20,5
ODF	P	[kg CFC11		8,17E-06	3,75		3,15E-10		4E-05	9,13E-1		9E-10	3,19E-		,47E-10	-1,71E-09
AP		[kg SO ₂ -Å		0,092	0,0	02	-0,056	0,	104	0,004	-0	,061	0,123	3	0,006	-0,069
EP		[kg PO ₄ ³⁻ -		8,66E-03	3,83E-04 -4		-4,57E-03		5E-02	9,32E-0		4E-03	1,32E-		,51E-03	-5,47E-03
POC ADP		[kg Ethen [kg Sb Ä		1,30E-02	1,03E-04		-8,00E-03		6E-02	2,51E-0		-8,43E-03			,06E-04	-9,13E-03
ADP		[Kg SD A [MJ]	q .j	1,72E-03 368,7	2,62E-08 0,9		-5,04E-07 -150,0		5E-03 25,4	6,37E-0 2,3		-7,04E-07 -185,0		03 1 2	,03E-07 3,6	-9,25E-07 -225,0
Captio	on	GWP = Globa potential; PO0 depletion pote	CP = Fo ential for	ing potential; ormation poter r fossil resour	ODP = De ntial of trop ces	oletion po ospheric	otential of the ozone photo	stratospl	oxidants;	e layer; AP ADPE = Ab	= Acidificat	on potent	tial of land	and water	: EP = Eutr	ophication
RESU	LTS	OF THE	LC/	A - RESO			E: 1 m² (Sand	vich p							
					PU 40	mm				PU 100 n	nm		PU 160 mm			1
Param		Unit		A1 - A3	С	4	D	A1	- A3	C4		D	A1 - A	43	C4	D
PER		[MJ]		18,3	-		-	2	2,2	-		-	29,2		-	-
PER PER		[MJ] [MJ]		0	-	4	-		0	-		-	0		-	-
PENF		[MJ]		<u>18,3</u> 337,1	0,	1	-0,2		2,2 37,0	0,1		3,4 -	29,2 560,3		0,2	-6,8
PENF	RM	[MJ]		47,5	-		-		12,3	-		-	182,4		-	-
PENF	۲۲	[MJ]		384,6	1,	1	-148,0	54	49,2	2,5	-1	89,0	742,8	3	4,1	-237,0
SM		[kg]		0	-		-		0	-		-	0		-	-
RSF NRS		[MJ] [MJ]	_	0	0		0	_	0	0		0	0		0	0
FW		[1013] [m ³]		0	-		0		0 -	0		<u>0</u> -	0 -		0	0 -
Captio		PERE = Use energy resou excluding no materials; PE NRSF = Use	irces u n renev ENRT =	sed as raw n wable primar = Total use o	naterials; y energy f non rene	PERT = resource wable p	Total use of s used as ra rimary energ	renewał aw mater gy resour	ole primai ials; PEN ces; SM	ry energy re IRM = Use	esources; l of non ren	PENRE = ewable p	als; PERM = Use of n primary en	on renew ergy resc	able prima ources use	ary energy d as raw
RESU	LTS	OF THE	LC/	<u> – OUT</u>	PUT F	LOW	S AND \	WAST	E CA	TEGOF	RIES: 1	m² S	andwi	ch pai	nel	
PU 40 mm								PU 100 n	nm			PU	160 mm	n		
Param	eter	Unit		A1 - A3	С	4	D	A1	- A3	C4		D	A1 - A	43	C4	D
HDW	۷*	[kg]		-	-		-		-	-		-	-		-	-
NHD\		[kg]	[-	-	[-	\perp	-	-		-	-		-	-
RWE		[kg]	-+	-			-		-	-		-	-		-	-
CRI MFR		[kg] [kg]	\dashv	0	-		0	+	0	-		0	0		-	0
MER		[kg] [kg]	\dashv	0		-+	8,2 1,7		0	-		3,1 1.0	0		-	8,6
EEE [T		[MJ]	\neg	0	5,	5	<u>1,7</u> -		0	- 13,5		4,0 -	0		- 21,7	6,8
EET [T	yp2]	[MJ]		0	15	,2	-		0	37,1		-	0		59,9	-
Captio																or re-use; MFR
Caption HWD = Hazardous waste disposed; NHWD = Non hazardous waste disposed; RWD = Radioactive waste disposed; CRU = Components for re-use; MFR Materials for recycling; MER = Materials for energy recovery; EEE = Exported electrical energy; EET = Exported thermal energy The inventories do not support the methodological approach for the declaration of water and waste indicators. The material amounts, displayed with these inventories																

** No credit is given for the amount of recycled steel entering load free the system

European Association for **Panels** and **Profiles**

References

Institut Bauen und Umwelt e.V., (Ed.):

General principles

for the EPD range of Institut Bauen und Umwelt e.V. (IBU), 2011-06.

PCR Part A

Product Category Rules for Construction Products. Part A: Calculation Rules for the Life Cycle Assessment and Requirements on the Background Report, 2013-07.

PCR Part B

Product Category Rules for Construction Products Part B: Requirements on the EPD for Thin walled profiles and profiled panels of metal, 2013-07. <u>www.bau-umwelt.com</u>

AgBB

Committee for Health-related Evaluation of Building Products (Ausschuss zur gesundheitlichen Bewertung von Bauprodukten)

EN ISO 14025:2011-10: Environmental labels and declarations – Type III environmental declarations – Principles and procedures

EN 15804:2012-04: Sustainability of construction works – Environmental Product Declarations – Core rules for the product category of construction products

DIN 18542:2009-07, Sealing of outside wall joints with impregnated sealing tapes made of cellular plastics - Impregnated sealing tapes - Requirements and testing

EN 10169:2012-06, Continuously organic coated (coil coated) steel flat products - Technical delivery conditions

EN 10346:2009-07, Continuously hot-dip coated steel flat products - Technical delivery conditions

EN 13165:2013-03, Thermal insulation products for buildings, Factory made rigid polyurethane foam (PU) products, Specification

EN 13501-1: 2010-01, Fire classification of construction products and building elements - Part 1: Classification using data from reaction to fire tests

EN 14509:2009-04 Self-supporting double skin metal faced insulating panels, Factory made products, Specifications

EN ISO 12944:1998-07, Paints and varnishes -Corrosion protection of steel structures by protective paint systems

GaBi 6: Software and databasis for Life Cycle Engineering. LBP, University of Stuttgart and PE International. 2013.

GaBi Documentation: Documentation of the GaBi 6 datasets. LBP, University of Stuttgart and PE International. 2013. http://documentation.gabi-software.com/

EPAQ European Quality Regulations for Sandwich Panels

REACH - Regulation concerning the **R**egistration , **E**valuation , **A**uthorisation and Restriction of **CH**emicals

Publisher Institut Bauen und Umwelt e.V. +49 30 30 877 48-0 Tel Institut Bauen und Umwelt e.V. Panoramastraße 1 Fax +49 30 30 877 48-29 10178 Berlin Mail info@bau-umwelt.com Web www.bau-umwelt.com Germany Programme holder Institut Bauen und Umwelt e.V. Tel +49 30 30 877 48-0 Institut Bauen und Umwelt e.V. Panoramastraße 1 +49 30 30 877 48-29 Fax 10178 Berlin Mail info@bau-umwelt.com Germany Web www.bau-umwelt.com **Owner of the Declaration** European Association for Panels and European Association for Profiles +49 2151 93630-0 Tel Europark Fichtenhain A 13a Panels and Profiles Fax +49 2151 93630-29 47807 Krefeld Mail info@panpro.eu Germany Web www.panpro.eu **PE INTERNATIONAL** Author of the Life Cycle Assessment SUSTAINABILITY PERFORMANCE PE International AG Tel +49 711 34 18 17-0 Hauptstraße 111 +49 711 34 18 17-25 Fax 70771 Leinfelden-Echterdingen info@pe-international.com Mail Germany Web www.pe-international.com

Following companies are represented with their products in this EPD